Home
Class 12
MATHS
let f(x)=x(e^(x^2)-e^(-x^2))-2x-int(e^(x...

let `f(x)=x(e^(x^2)-e^(-x^2))-2x-int(e^(x^2)-e^(-x^2))dx` if `f(x)` is decreasing in `(x_1,x_2)` then `x_1+x_2` equals to:

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(e^(2x)-1)/(e^(2x)+1) is

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^x)/((1+e^x)(2+e^x))dx

int(e^x)/((1+e^x)(2+e^x))dx

int (e^(2x) +e^(-2x))/(e^(x)) dx

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =