Home
Class 12
MATHS
lim(x->pi)sgn[tanx]...

`lim_(x->pi)sgn[tanx]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following are true? lim_(x->pi/2+) tan x=oo , lim_(x->pi/2-) tanx=oo , lim_(x->pi/2) tanx=oo , lim_(x->pi/2) tanx=does not exist

The value of lim_(x rarr pi)sgn[tan x], where [.] represents greatest integer function,

Evaluate the following one sided limit: ("lim")_(x->pi/2^-)tanx

lim_(x->0)tanx/x

Examine the existence of the following limits: lim_(xto pi/2) tanx

lim_(x->(pi/2)) (1-sinx)tanx =

lim_(x->(pi/2)) (1-sinx)tanx =

lim_(x rarr pi/2) tanx log_e sinx=

Evaluate the following limit (lim)_(x->pi/2)(sin x)^(tanx)

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to