Home
Class 9
MATHS
7i(2x+b-c)^(2)-(2x-b+c)^(2)...

7i(2x+b-c)^(2)-(2x-b+c)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : x^(2)(b-c)+b^(2)(c-x)+c^(2)(x-b)

Show that: (x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1((x^(a+b))(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

If a,b,c,x are all real numbers,and (a^(2)+b^(2))x^(2)-2b(a+c)x+(b^(2)+c^(2))=0 prove that a,b,c are in G.P.,and x is their common ratio.

The roots of the quadratic equation (a+b-2c)x^(2)+(2a-b-c)x+(a-2b+c)=0 are

Prove that: ((x^(a))/(x^(b)))^(a)-2+ab+b^(2)x((x6b)/(x^(c)))^(b)-2+bc+c^(2)x((x^(c))/(x^(a)))^(c)-2+ca+a^(2)

((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))times((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))times((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))xx((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

If a,b,c are the roots of the equation x^(3)-3x^(2)+3x+7=0, then the value of det[[2bc-a^(2),c^(2),b^(2)c^(2),2ac-b^(2),a^(2)b^(2),a^(2),2ab-c^(2)]] is