Home
Class 12
MATHS
lim(x->1)({x})^(1/(Inx)), where {.} deno...

`lim_(x->1)({x})^(1/(Inx))`, where {.} denotes the fractional part function

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)=(cos^(-1)(1-{x}))/(sqrt(2){x}); where {.} denotes the fractional part function,then

underset(xrarr2^(+))(lim){x}(sin(x-2))/((x-2)^(2)) = (where {.} denotes the fractional part function)

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -