Home
Class 12
MATHS
Show that the lines vec(r )=(hat(i) ...

Show that the lines
`vec(r )=(hat(i) +2hat(j) +3hat(k)) + lambda(2hat(i) +3hat(j) +4hat(k)) " and " vec(r )=(4hat(i) +hat(j)) + mu (5hat(i)+ 2hat(j) +hat(k))`
intersect .
Also find their point of the intersection.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Prove that lines vec( r)= (hat(i)+ hat(j) + hat(k))+ t(hat(i) - hat(j) + hat(k)) and vec(r ) = (3hat(i) - hat(k)) + s(4hat(j) - 16hat(k)) intersect. Also find the position vector of their point of intersection

Show that the lines vec(r ) =(hat(i) -hat(j)) +lambda (2hat(i)+ hat(k)) " and " vec(r ) =(2hat(i) -hat(j)) + mu (hat(i)+ hat(j) -hat(k)) do not intersect .