Home
Class 11
MATHS
1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(2)...

1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the statement P(n)=1+3+3^2+…….+3^(n-1)=frac(3^(n-1))(2) Check P(1) is true.

Consider the statement P(n)=1+3+3^2+…….+3^(n-1)=frac(3^(n)-1)(2) If P(k) is true, prove that P(k+1) is true.

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove the following by using the principle of mathematical induction for all n in Nvdots1.3+2.3^(2)+3.3^(3)+...+n.3^(n)=((2n-1)3^(n+1)+3)/(4)

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=