Home
Class 12
MATHS
tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2))...

tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((3a^2x-x^3)/(a^3-3ax^2))=3tan^(-1)""(x)/a, agt 0 ,(-a)/sqrt3lexlea/sqrt3

Write the following functions in the simplest form : tan^(-1)((3a^2x - x^3)/(a^3- 3ax^2)), a gt 0, -a/sqrt3 le x le a/sqrt3

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

If y = Tan^(-1)((3a^2x-x^3)/(a^3-3ax^2)) then (dy)/(dx)=

tan^(-1)((3x-x^(3))/(1-3x^(2)))

Differentiate 'tan^(^^)(-1)((3a^(^^)2x-x^(^^)3)/(a^^3-3ax^(^^)2),lambda-1/(sqrt(3))

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .