Home
Class 12
MATHS
Let |z-sqrt3-i|+|z-1-sqrt3i|=sqrt6-sqrt2...

Let `|z-sqrt3-i|+|z-1-sqrt3i|=sqrt6-sqrt2` Find the difference between the maximum and a minimum value of the argument of z

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=sqrt3-sqrt2i , then find zbarz dot

Principal argument of z=-1-i sqrt(3)

If |Z|=3 the maximum value of |Z-1+sqrt(3)i | is

Minimum value of 4|z-i|+10|z-sqrt(3)|=

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :