Home
Class 12
MATHS
If tan h^(- 1)(x)=aloge((1+x)/(1-x)),|x...

If `tan h^(- 1)(x)=alog_e((1+x)/(1-x)),|x|<1` then `a=`

Promotional Banner

Similar Questions

Explore conceptually related problems

tanh^(-1)x=alog|(1+x)/(1-x)|, |x| lt 1 rArr a =

e^(tan^(-1)x)log(tan x)

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^(-1)e tan^(-1)(1/e) (d) none of these

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dxi s tane (b) tan^(-1)e tan^(-1)(1/e) (d) none of these

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

The value of int_1^e((tan^(-1)x)/x+(logx)/(1+x^2))dx ,is (a) tane (b) tan^(-1)e (c) tan^(-1)(1/e) (d) none of these

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=