Home
Class 11
MATHS
The range of the function f(x) = [log(2/...

The range of the function `f(x) = [log_(2/3)|(x^2 -1)/(x^2+1)|]` where [-] denotes the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

The range of the function f(x)=sin^-1(log [x])+log(sin^-1[x]), (where [,] denotes the greatest integer function) is

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Find the domain and range of the following function: f(x)=sin^(-)[log_(2)((x^(2))/2)] , where [.] denotes greatest integer function.