Home
Class 11
MATHS
If I1 = lim(x ->0^+) (sin{x})/{{x}} and ...

If `I_1 = lim_(x ->0^+) (sin{x})/{{x}}` and `I_2 = lim_(x -> 0^-) (sin{x})/{{x}}`, where {.} denotes the fractional function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(sin^2x)/x

lim_(x rarr1)(x sin{x})/(x-1)," where "{x}" denotes the fractional part of "x," is equal to "

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is

The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is