Home
Class 12
MATHS
sin(pi/5) sin((2pi)/5) sin((3pi)/5) sin(...

`sin(pi/5) sin((2pi)/5) sin((3pi)/5) sin((4pi)/5)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

Prove that: sin(pi/5) sin2pi/5 sin3pi/5 sin4pi/5=5/16

2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin((5pi)/8)sin((6pi)/8)sin((7pi)/8) = ?

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

Prove that: (sin pi)/(5)(sin(2 pi))/(5)(sin(3 pi))/(5)(sin(4 pi))/(5)=(5)/(16)

sin^4(pi/8)+sin^4((2pi)/8)+sin^4((3pi)/8)+sin^4((4pi)/8)+sin^4((5pi)/8)+sin^4((6pi)/8)+sin^4((7pi)/8)=

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14)sin((7pi)/14)sin((9pi)/14)sin((11pi)/14)sin((13pi)/14) is