Home
Class 12
MATHS
Let g(x)=int(1+2cosx)/((cosx+2)^2)dxa n ...

Let `g(x)=int(1+2cosx)/((cosx+2)^2)dxa n dg(0)=0.` then the value of `8g(pi/2)` is __________

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=int(1+2cos x)/((cos x+2)^(2))dx and g(0)=0. then the value of 8g((pi)/(2)) is

int_(0)^( pi/2)(cosx/(cosx+sinx))dx

int_(0)^( pi/2)(cosx)/(1+sin x)dx

If M=int_0^((pi)/(2))(cosx)/(x+2)dx,N=int_0^((pi)/(4))(sinxcosx)/((x+1)^2)dx , then the value of M-N is

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

8) int_0^(2pi)cosx dx

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

If M=int_(0)^((pi)/2)(cosx)/(x+2)dx and N=int_(0)^((pi)/4)(sinxcosx)/((x+1)^(2))dx , then the value of M-N is