Home
Class 11
MATHS
The domain of the function sqrt(log(1/3)...

The domain of the function `sqrt(log_(1/3) log_4 ([x]^2 - 5 ))` is (where [x] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The complete set of values of x in the domain of function f (x)= sqrt(log _(x+2{x})([x] ^(2)-5[x] +7)) where [.] denote greatest integer functioon and {.} denote fraction pert function) is :

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

The domain of the function: sqrt(log_(10)((5x-x^(2))/4)) is

Find the domain and range of the following function: f(x)=sqrt(log_(1//2)log_(2)[x^(2)+4x+5]) where [.] denotes the greatest integer function