Home
Class 12
MATHS
The number of distinct real values of...

The number of distinct real values of `lambda` , for which the vectors `lambda^2 hat i+ hat j+k , hat i-lambda^2 hat j+ hat ka n d hat i+ hat j-lambda^2 hat k` are coplanar is a. zero b. one c. two d. three

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real values of lambda, for which the vectors -lambda^(2)hat i+hat j+k,hat i-lambda^(2)hat j+hat k and hat i+hat j-lambda^(2)hat k are coplanar is a.zero b.one c.two d.three

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

Find the value of lambda for which the three points with position vector 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k , and4 hat i+5 hat j+lambda hat k are coplanar.

Find lambda if the vectors hat i - hat j + hat k , 3 hat i + hat j + 2 hat k and hat i + lambda hat j - 3 hat k are coplanar.

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

Find lambda if the vectors 5 hat i + 2 hat j - hat k and lambda hat i - hat j + 5 hat k are orthogonal.

Find lambda so that the vectors vec a=2 hat i- hat j+ hat k ,\ vec b= hat i+2 hat j-3 hat k\ a n d\ vec c=3 hat i+lambda hat j+5 hat k are coplanar.

The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + hat(k) and hat(i) + 2 hat(j) + 3 hat(k) are perpendicular is

Find the value of lambda for which the four points with position vector 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat ka n d4 hat i+5 hat j+lambda hat k are coplanar.

The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) and 2 hat(i) - 4 hat(j) + lambda vec(k) are parallel is