Home
Class 11
MATHS
If (log)k xdot(log)5k=(log)x5,k!=1,k >0,...

If `(log)_k xdot(log)_5k=(log)_x5,k!=1,k >0,` then `x` is equal to `k` (b) 1/5 (c) 5 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to (a) k (b) 1/5 (c) 5 (d) none of these

If (log)_kx . (log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (a) k (b) 1/5 (c) 5 (d) none of these

If log_(k)x*log_(5)k=log_(x)5,k!=1,k>0, then x is equal to k(b)1/5(c)5(d) none of these

if log_(k)x.log_(5)k=log_(x)5,k!=1,k>0, then find the value of x

if log_kx.log_5k = log_x5 , k!=1 , k>0 , then find the value of x

if log_(k)x*log_(5)k=log_(x)5 then xis equal to

if log_(k)x*log_(5)k=log_(x)5 then xis equal to

If log_(k)xlog_(5)k=3 , then what is x equal to?

If x=(log)_k b=(log)_b c=1/2(log)_c d , then (log)_k d is equal to 6x (b) (x^3)/2 (c) 2x^3 (d) 2x^8

If x=(log)_k b=(log)_b c=1/2(log)_c d , then (log)_k d is equal to (a) 6x (b) (x^3)/2 (c) 2x^3 (d) 2x^8