Home
Class 12
MATHS
[" Let "f:[-1,oo)rarr[-1,oo)" is given b...

[" Let "f:[-1,oo)rarr[-1,oo)" is given by "f(x)=(x+1)^(2)-1,x>=-1." Show that "f" is invertible "],[" Also,find the set "S={x:f(x)=f^(-1)(x)}]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[-1,oo]rarr[-1,) is given by f(x)=(x+1)^(2)-1,x>=-1. Show that f is invertible.Also,find the set S={x:f(x)=f^(-1)(x)}

Let f:[-1,oo]vec[-1,) is given by f(x)=(x+1)^2-1,xgeq-1. Show that f is invertible. Also, find the set S={x :f(x)=f^(-1)(x)}dot

Let f:[-1,oo]vec[-1,) is given by f(x)=(x+1)^2-1,xgeq-1. Show that f is invertible. Also, find the set S={x :f(x)=f^(-1)(x)}dot

If f:[1, oo)rarr[2, oo) is given by f(x)=x+(1)/(x) then f^(-1)(x)=

Let f:[-1,1] to R_(f) be a function defined by f(x)=(x)/(x+2) . Show that f is invertible.

If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=

If f: [1, oo) rarr [5, oo) is given by f(x) = 3x + (2)/(x) , then f^(-1) (x) =

f:(-oo,oo)rarr(0,1] defined by f(x)=(1)/(x^(2)+1) is

If f:[1,oo)to[1,oo) is given by f(x)=x+(1)/(x) , then f^(-1)(x) equals :

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)