Home
Class 12
MATHS
" If "y=sqrt(log x+sqrt(log x+sqrt(log x...

" If "y=sqrt(log x+sqrt(log x+sqrt(log x+.........oo))," then show that "(2y-1))(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sqrt (log x + sqrt (log x + sqrt (log x + ......oo))) , then show that dy/dx = frac{1}{x(2y-1)}

If y = sqrt(log x + sqrt(logx + sqrt(log x + .....oo))) , prove that (2y - 1) (dy)/(dx) = 1/x

If y=sqrt(log x+sqrt(log x +sqrt(log x+....oo))) " then prove that " dy/dx = 1/(x(2y-1)).

If =sqrt(log x+sqrt(log x+sqrt(log x+)rarr oo)) prove that (2y-1)(dy)/(dx)=(1)/(x)

If y= sqrt (log x + sqrt (log x + sqrt (log x + .......oo))) , then dy/dx =....... A) frac{1}{2y-1} B) frac {1}{x(2y-1)} C) frac {1}{2xy} D) frac {1}{x(y-1)}

y=sqrt(log_(e)x+sqrt(log_(e)x+.........oo)) then (dy)/(dx) is

If y=sqrt(log x+sqrt(cos x+sqrt(cos x+...to oo))) prove that (dy)/(dx)=(sin x)/(1-2y)

If y=(sqrt(x))^(sqrt(x)^(sqrt(x))...oo), show that (dy)/(dx)=(y^(2))/(x(2-y log x))

If y=sqrt(x)^(sqrt(x)^(sqrtx...oo)) then prove that dy/dx=(y^2)/(x(2-y log x )).