Home
Class 12
MATHS
Investigate for the maxima and minima of...

Investigate for the maxima and minima of the function `f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

Investigate for maxima and minima of the function f(x) =int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt .

Investigate for the maxima and minima of the function _(x)f(x)=int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt

The function f(x) = int_1^(x) [2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)] dt attains its maximum at x =

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

The points for which the function f(x)=underset1overset"x"int{2(t-1)(t-2)^3+3(t-1)^2(t-2)^2} dt attins maxima and minima is :

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt