Home
Class 12
MATHS
ABCD is a trapezium such that AB and CD ...

ABCD is a trapezium such that AB and CD are parallel and `B C_|_C D` . If `/_A D B""=theta,""B C""=""p""a n d""C D""=""q` , then AB is equal to (1) `(p^2+q^2costheta)/(pcostheta+qsintheta)` (2) `(p^2+q^2)/(p^2costheta+q^2sintheta)` (3) `((p^2+q^2)sintheta)/((pcostheta+qsintheta)^2)` (4) `((p^2+q^2)sintheta)/(pcostheta+qsintheta)`

Text Solution

AI Generated Solution

To solve the problem, we need to find the length of side AB in trapezium ABCD, given that AB is parallel to CD, BC is perpendicular to CD, and we have the angles and lengths specified. ### Step-by-step Solution: 1. **Understanding the trapezium**: - We have a trapezium ABCD where AB || CD. - BC is perpendicular to CD, which means angle BCD = 90°. - Let BC = p, CD = q, and angle ADB = θ. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|11 Videos
  • DETERMINANTS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|8 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(q)/(p) then find the value of (p sintheta+qcos theta)/(p cos theta+qsintheta)

If p sintheta+qcostheta=3&qsintheta-pcostheta=2 , then p^(2)+q^(2)=?

ABCD is a trapezium such that AB|CD and CB is perpendicular to them.If /_ADB=theta,BC=p, and CD=q, show that AB=((p^(2)+q^(2))sin theta)/(p cos theta+q sin theta)

If tantheta =p/q , then the value of (p sintheta-q costheta)/(p sintheta+q costheta) is

Let P={theta:sintheta-costheta=sqrt2costheta}and Q={theta: sintheta+costheta=sqrt2sintheta} be two sets. Then

Let P={theta:sintheta-costheta=sqrt2cos theta}and Q={theta:sintheta+costheta=sqrt2sintheta} be two ses. Then,

If A=((1,2),(0,1)),P=((costheta, sintheta),(-sintheta, costheta)),Q=P^(T)AP , find PQ^(2014)P^(T) :

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sintheta+costheta=a and (sintheta+costheta)/(sinthetacostheta)=b , then (a) b=(2a)/(a^2-1) (b) a=(2b)/(b^2-1) (c) ab=b^2-1 (d) a+b=1

If p sintheta+qcostheta=aandpcostheta-qsintheta=b, show that : (p+a)/(q+b)+(q-b)/(p-a)=0 .