Home
Class 14
MATHS
" B.20) "[[2,-1,4],[-3,0,1],[-1,1,2]]qua...

" B.20) "[[2,-1,4],[-3,0,1],[-1,1,2]]quad A^(-1)=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the matrices A and B if 2A+3B=[[1,2,-1],[0,2,1],[1,2,4]] and A+2B=[[2,0,1],[1,1,2],[3,1,2]]

If A=[[1,2,3],[0,-1,4],[3,1,5]] and B=[[2,-1,0],[1,4,3],[3,0,-2]], verify that (AB)^-1=B^-1A^-1.

If A+B=[[1,2,1],[1,1,-1],[-3,2,4]] and A-B=[[-2,3,7],[-4,1,0],[2,4,1]] then 2A+4B equals

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

If A=[[3,2,-1],[2,-2,0],[1,3,1]],B=[[-3,-1,0],[2,1,3],[4,-1,2]] and X=A+B then find X

The matrix A^2 + 4 A-5I, where I is identity matrix and A = [[1,2],[4,-3]]equals : (A) 32[[1,1],[1,0]] (B) 4[[2,1],[2,0]] (C) 4[[0,-1],[2,2]] (D) 32[[2,1],[2,0]]

A^(1)=[[3,4-1,20,1]] and B=[[-1,2,11,2,3]](A+B)^(1)=A^(1)+B^(1)

If A= [[2,4,-1],[-1,0,2]], B=[[3,4],[-1,2],[2,1]] , Show that (AB)'=B'A' .

If A= [[2,4,-1],[-1,0,2]], B=[[3,4],[-1,2],[2,1]] , Show that (AB)'=B'A' .