Home
Class 11
MATHS
If "log"(2) "sin" x - "log"(2) "cos" x -...

If `"log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1`, then x =

Promotional Banner

Similar Questions

Explore conceptually related problems

lf_(log_(2)sin x-log_(2)cos x-log_(2)(1-tan^(2)x))=-1, then x=

log_(2)sin x-log_(2)cos x-log_(2)(1-tan x)-log_(2)(1+tan x)=-1

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

If log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1 , then tan2x is equal to (wherever defined)

lf_(log_(2)(3sin x)-log_(2)(cos x)-log_(2)(1-tan x)-log_(2)(1+tan x)=1) then tan x=

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If log_2(sinx)-log_2(cos x)-log_2(1-tan x)-log_2(1+ tan x)=-1 then tan 2x =

log(x-1)+log(x-2)lt log(x+2)

The solution of the equation "log"_("cos"x) "sin" x + "log"_("sin"x) "cos" x = 2 is given by