Home
Class 10
MATHS
Verify whether P(-2,2) , Q(2,2) and R(2,...

Verify whether P(-2,2) , Q(2,2) and R(2,7) are the vertices of a
right angled triangle or not by completing the following acitvity.
` PQ= sqrt([2-(-2)]^(2) + (2-2)^(2)) = square ` …(1)
`QR = sqrt((2-2)^(2) + 97-2)^(2)) = 5` …(2)
` PR = sqrt([2-(-2)]^(2) + (7-2)^(2))= square ` ...(3)
from (1),(2),(3)
` PR^(2) = square , QP^(2) + QR^(2) = square `
` therefore PR^(2) square PQ^(2) + QR^(2)[ = or ne ]`
` therefore triangle "PQR" square ` a right angled triangle [is /is not]

Text Solution

Verified by Experts

The correct Answer is:
`Delta PQR is right angled triangle
Promotional Banner

Topper's Solved these Questions

  • CO-ORDINATE GEOMETRY

    UNIQUE PUBLICATION|Exercise Practice Set 5.2|16 Videos
  • CO-ORDINATE GEOMETRY

    UNIQUE PUBLICATION|Exercise Practice Set 5.3|20 Videos
  • CO-ORDINATE GEOMETRY

    UNIQUE PUBLICATION|Exercise Assignment-V|8 Videos
  • CIRCLE

    UNIQUE PUBLICATION|Exercise 1 MARKS QUESTION |2 Videos
  • COVERAGE STANDARD QUESTION

    UNIQUE PUBLICATION|Exercise 2 Mark Questions|73 Videos

Similar Questions

Explore conceptually related problems

In DeltaPQR , PQ^(2)=PR^(2)+QR^(2) then state which angle will be the right angle.

Square root of 3/2 (x - 1) + sqrt(2x^2 - 7 x - 4) is

(7^((-1/2))xx5^(2))^(2)+sqrt(25^(3))=

M and N are the points on sides QR and PQ respectively of a trianglePQR , right angled at Q. prove that PM^(2) + RN^(2)= PR^(2)+MN^(2)

Points P(a,-4),Q(-2,b) and R(0,2) are collinear,such that PR=2QR. Calculate the values of a andb.

If (0,1),(1,1) and (1,0) be the middle points of the sides of a triangle,its incentre is (2+sqrt(2),2+sqrt(2))( b) [2+sqrt(2),-(2+sqrt(2))](2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]