Home
Class 12
MATHS
If 1 , omega , omega^(2) are the cube ...

If ` 1 , omega , omega^(2)` are the cube roots of unity prove that
`(1 - omega + omega^(2))^(6) + ( 1 - omega ^(2) + omega)^(6) = 128 = (1 - omega + omega^(2))^(7) + ( 1 + omega - omega^(2))^(7)`

Promotional Banner

Topper's Solved these Questions

  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Textual Exercise (EXERCISE - 2 (a) )|11 Videos
  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE - 2 (b)|32 Videos
  • COMPLEX NUMBERS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise LAQ|1 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Question|3 Videos

Similar Questions

Explore conceptually related problems

If 1 , omega + omega^(2) are the cube roots of unity prove that (i) (1 - omega + omega^(2))^(6) + (1 - omega^(2) + omega)^(6) = 128 = ( 1 - omega + omega^(2))^(7) + ( 1 + omega - omega^(2))^(7) (ii) ( a+ b) ( aomega+b omega^(2))( a omega^(2) + b omega) = a^(3) + b^(3) (iii) x^(2) + 4x + 7 = 0 " where " x = omega - omega^(2) - 2 .

If 1, omega, omega ^(2) are the cube roots of unity , then w^2=

If 1 , omega , omega^(2) are the cube roots of unity prove that (a + b) ( a omega + b omega^(2))(aomega^(2) + b omega) = a^(3) + b^(3)

If 1 , omega , omega^(2) are the cube roots of unity , then (a+ b)^(3) + (a omega + b omega^(2))^(3) + ( a omega^(2) + b omega)^(3) =

If 1 , omega , omega^(2) are the cube roots of unity, then prove that (2 - omega)(2 -omega^(2)) (2 - omega^(10)) ( 2 - omega^(11)) = 49 .

If 1 , omega , omega^(2) are the cube roots of unity, then prove that 1/(2 + omega) + 1/(1+2 omega) = 1/(1 + omega) .

If 1, omega , omega^(2) are the cube roots of unity, then prove that 1/(2 + omega) + 1/(1 + 2 omega) = 1/( 1 + omega) .

If 1 , omega , omega^(2) are the cube roots of unity , then (x + y + z) (z + y omega + zomega^(2)) ( x + y omega^(2) + z omega) =

If 1 , omega , omega^(2) are the cube roots of unity prove that x^(2) + 4x + 7 = 0 " where " x = omega - omega^(2) - 2 .

(1 - omega) (1 - omega^(2)) (1 - omega^(4)) (1 - omega^(5)) (1 - omega^(7)) (1 - omega^(8)) =