Home
Class 12
MATHS
If 1, omega , omega^(2) are the cube ro...

If ` 1, omega , omega^(2)` are the cube roots of unity, then prove that `1/(2 + omega) + 1/(1 + 2 omega) = 1/( 1 + omega)` .

Promotional Banner

Topper's Solved these Questions

  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Questions|6 Videos
  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Very Short Answer Questions|2 Videos
  • COMPLEX NUMBERS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise LAQ|1 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Question|3 Videos

Similar Questions

Explore conceptually related problems

If 1, omega, omega ^(2) are the cube roots of unity , then w^2=

If 1 , omega , omega^(2) are the cube roots of unity, then prove that (2 - omega)(2 -omega^(2)) (2 - omega^(10)) ( 2 - omega^(11)) = 49 .

If 1 , omega , omega^(2) are the cube roots of unity, then prove that ( x + y + z) ( x + y omega + z omega^(2)) ( x + yomega^(2) + z omega) = x^(3) + y^(3) + z^(3) - 3xyz

If 1 , omega , omega^(2) are the cube roots of unity prove that (1 - omega + omega^(2))^(6) + ( 1 - omega ^(2) + omega)^(6) = 128 = (1 - omega + omega^(2))^(7) + ( 1 + omega - omega^(2))^(7)

If 1 , omega , omega^(2) are the cube roots of unity , then the roots of (x - 2)^(2) + 1 = 0 are

If 1 , omega , omega^(2) are the cube roots of unity , then the roots of (x - 1)^(3) + 8 = 0 are

If 1 , omega , omega^(2) are the cube roots of unity prove that (a + b) ( a omega + b omega^(2))(aomega^(2) + b omega) = a^(3) + b^(3)

If 1 , omega + omega^(2) are the cube roots of unity prove that (i) (1 - omega + omega^(2))^(6) + (1 - omega^(2) + omega)^(6) = 128 = ( 1 - omega + omega^(2))^(7) + ( 1 + omega - omega^(2))^(7) (ii) ( a+ b) ( aomega+b omega^(2))( a omega^(2) + b omega) = a^(3) + b^(3) (iii) x^(2) + 4x + 7 = 0 " where " x = omega - omega^(2) - 2 .

If 1 , omega , omega^(2) are the cube roots of unity , then find the values of the following . (1 - omega) ( 1 - omega ^(2)) ( 1 - omega^(4)) ( 1 - omega^(8))

If 1 , omega , omega^(2) are the cube roots of unity , then (x + y + z) (z + y omega + zomega^(2)) ( x + y omega^(2) + z omega) =