Home
Class 12
MATHS
Find the sum of the squares and the sum ...

Find the sum of the squares and the sum of the cubes of the roots of the equations `x^3-px^2+qx-r=0` in terms of p,q,r

Text Solution

Verified by Experts

The correct Answer is:
`= p(p^2-3p)+3r`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE -4(a)|23 Videos
  • THEORY OF EQUATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE -4(b)|24 Videos
  • SYSTEM OF CIRCLE

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERXCISE - 2(b)|23 Videos

Similar Questions

Explore conceptually related problems

If the sum of two roots of the equation x^(3) -2px^(2)+3qx -4r=0 is zero, then the value of r is

Show that the roots of the equation x^3 +px^2 +qx +r=0 are in G.P p^3 r= q^3

Show that the roots of the equation x^3 +px^2 +qx +r=0 are in H.P 2p^3 =9r (pq-3r)

IF the sum of the square of the roots of x ^2+px -3=0 is 10 then the values of p=

IF the sum of the roots of the equation x^2+px +q=0 is 3 times their difference , then

Show that the roots of the equation x^3 +px^2 +qx +r=0 are in A.P 2p^3 - 9 pq + 27 r=0

If the sum of the two roots of x^3 +px^2 +qx +r=0 is zero then pq=

The ratio of the roots of the equation ax ^2 + bx +c=0 is same as the ratio of the roots of the equation px^2 + qx +r=0 . If D_1 and D_2 are the discrimination of ax ^2 + bx + c=0 and px^2 +qx +r =0 respectively , then D_1 :D_2 =