Home
Class 12
MATHS
If the l x+ my=1 is a normal to the hype...

If the `l x+ my=1` is a normal to the hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`, then shown that `(a^(2))/(l^(2))-(b^(2))/(m^(2))=(a^(2)+b^(2))^(2)`

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE-5 (a)|23 Videos
  • HYPERBOLA

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise VSAQ|1 Videos
  • ELLIPSE

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE 4(B)|15 Videos
  • INTEGRATION

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise DAM SURE LAQ - 8 MARKS|9 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 s a tangent to the hyperboal (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then show that a^(2)l^(2)-b^(2)m^(2)=n^(2)

If lx+ my = 1 is a normal to the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1, "then" a^(2) m^(2) - b^(2) l^(2) =

A : The eqution of the normal to the hyperbola x^(2) -4y^(2) =5 at (3,-1) is 4x -3y = 15 R : The equation of the normal to the hyperbola (x^(2))/( a^(2))-(y^(2))/(b^(2)) =1 at (x_1,y_1) "is" ( a^(2)x)/( x_1) +(b^(2)y)/( y_1) =a^(2) +b^(2)

The maximum number of normals to hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 from an external point is

The sides AC and AB of a Delta ABC touch the conjugate hyperbola of the hyperbola (x^(2))/( a^(2)) -(y^(2))/( b^(2)) =1. If the vertex A lies on the ellipse (x^(2))/( a^(2))+(y^(2))/( b^(2))= 1 ,then the side BC must touch