Home
Class 12
MATHS
Suppose that f: R to R is a continuous ...

Suppose that `f: R to R ` is a continuous periodic function and T is the period of it . Let a `in R` . Then prove that for any positive integer n ` int_(0)^(a+nT) f(x)dx=n int_(a)^(a+T) f(x) dx`

Text Solution

Verified by Experts

The correct Answer is:
`underset(a) overset(a+T)int f(x) dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exersice -7(c)|23 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-7(d)|27 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise -7(a)|4 Videos
  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Questions|6 Videos
  • DIFFERENTIAL EQUATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE- 8(e)|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a) (f(x)+f(-x))dx=

If int_(0)^(b-c) f(x+c) dx = k int_(b)^(c) f (x) dx then k=

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

If k int_(0)^(1) x f (3 x) dx = int_(0)^(3) t f(t) dt then k=

If int_(0)^(pi) f(tan x) dx= lambda then int_(0)^(2pi) f(tan x) dx=

If f(a+b-x)=f(x)," then "int_(a)^(b)xf(x)dx=

Let f(x) be a periodic function with period 1 and integrable over any finite interval. Also for two real numbers a and b and for any two positive intergers m and n (m != n), int_(a)^(a+m)f(x)dx=int_(b)^(b+n)f(x)dx . Then calculate the value of int_(m)^(n)f(x)dx

Let f: R rarr R be defined by f(x)=|x-2n| if x in [2 n -1, 2n+1], (n in Z) . Then show that for any positive integer n, int_(0)^(2n) f(x)dx=n . Hint : f in continuous and periodic with period 2.

Let f:R to R be a continuous function and f(x)=f(2x) is true AA x in R . If f(1) = 3 then the value of int_(-1)^(1) f(f(x))dx=

VIKRAM PUBLICATION ( ANDHRA PUBLICATION)-DEFINITE INTEGRALS-Exercise -7(b)
  1. Evaluate the limit . lim(n to oo)l [(1+(1)/(n^(2)))(1+(2^(2))/(n^(2...

    Text Solution

    |

  2. Evaluate the limit . lim(n to 00) ((n!)^(1/n))/(n)

    Text Solution

    |

  3. Evaluate the integral int(0)^(pi//2) (dx)/(4+5cosx )

    Text Solution

    |

  4. Evaluate the integral int(a)^(b) sqrt((x-a)(b-x))dx

    Text Solution

    |

  5. Evaluate the integral int(0)^(1//2) (xsin^(-1)x)/(sqrt(1-x^(2))dx

    Text Solution

    |

  6. Evaluate the integral I=int(0)^(pi//4) (sinx+cosx)/(9+16sin2x)dx

    Text Solution

    |

  7. Evaluate the integral int(0)^(pi//2) (asinx+bcosx )/(sinx +cosx)dx

    Text Solution

    |

  8. Evaluate the integral int(0)^(a) x(a-x)^(n)dx

    Text Solution

    |

  9. Evaluate the integral int(0)^(2)xsqrt(2-x)dx

    Text Solution

    |

  10. Evaluate the integral int(0)^(pi) x sin^(3)x dx

    Text Solution

    |

  11. overset(pi)underset(0)int(x)/(1+sinx)dx.

    Text Solution

    |

  12. Evaluate the integral underset(0)overset(pi)int (x sinx)/(1+cos^(2)x...

    Text Solution

    |

  13. Evaluate the integral int(0)^(1) (log(1+x))/(1+x^(2))dx

    Text Solution

    |

  14. Evaluate the integral int(0)^(pi) (xsinx)/(1+cos^(2)x) dx

    Text Solution

    |

  15. Evaluate the integral int(0)^(pi//4) log(1+tanx)dx

    Text Solution

    |

  16. Evaluate the integral int(0)^(3/2) |x sinpix| dx

    Text Solution

    |

  17. Evaluate the integral int(0)^(1) sin^(-1) ((2x)/(1+x^(2)))dx

    Text Solution

    |

  18. Evaluate the integral int(0)^(1) x tan^(-1)x dx

    Text Solution

    |

  19. Evaluate the integral int(0)^(pi) (x sinx)/(1+cos^(2)x) dx

    Text Solution

    |

  20. Suppose that f: R to R is a continuous periodic function and T is the...

    Text Solution

    |