Home
Class 12
MATHS
int(0)^(2) |1-x| dx...

`int_(0)^(2) |1-x| dx`

Text Solution

Verified by Experts

The correct Answer is:
`1/2 +1/2 =1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Short Answer Question|2 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Question|3 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-7(d)|27 Videos
  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Questions|6 Videos
  • DIFFERENTIAL EQUATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE- 8(e)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(2)|1-x|dx

Evaluate the following integrals (ii) int_(0)^(2)|1-x|dx

Match the following : {:(" LIST - I","LIST - II"),("I)" int_(0)^(2)|1-x|dx=,"a) " 1),("II)" int_(0)^(2)|x-2|dx=,"b) "2),("III)" int_(0)^(2)(|x|+|x-1|)dx=,"c) "3):}

int_(0)^(2)[|x|+|x-1|]dx=

int_(0)^(a)f(x)dx=lambda and int_(0)^(a)f(2a-x)dx=mu then int_(0)^(2a)f(x) dx is equal to

If int_(0)^(10)f(x)dx=5 , then sum_(K=1)^(10) int_(0)^(1) f(K-1+x)dx is equal to

int_(0)^(2) [x^(2)-1]dx=

int_(0)^(1)x^(2)(1-x)^(5)dx=

int_(0)^(1) ((1-x^(2))dx)/(x^(4)+x^(2)+1)=