Home
Class 12
MATHS
Statement - I : The value of the integra...

Statement - I : The value of the integral `int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx))` is equal to `pi/6` . Statement - II : `int_a^bf(x)dx=int_a^bf(a+b-x)dxdot` (1) Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement -I is False; Statement -II is True (4) Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I

Text Solution

Verified by Experts

`i = int_(pi/6)^(pi/3) dx/(1 + sqrt tan x) `
`= int_(pi/6)^(pi/3) dx/(1 + sqrt(tan(pi/3 + pi/6 - x))`
`= int_(pi/6)^(pi/3) dx/(1 + sqrt cot x) `
`= int_(pi/6)^(pi/3) (sqrt tan x)/(sqrt tan x + 1) dx`
equation `1+ 2`
`2i = int_(pi/6)^(pi/3) (1 + sqrt tan x)/(1 + sqrt tan x) dx`
`2i = x`
`2i = pi/3 - pi/6`
...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|21 Videos
  • B. Arch 2021 (A)

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|13 Videos

Similar Questions

Explore conceptually related problems

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

Consider : Statement I : (phat~""q)hat(~""phatq) is a fallacy. Statement II : (pvecq)harr(~""qvec~""p) is a tautology. (1) Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement -I is False; Statement -II is True (4) Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I

Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

Given : A circle, 2x^2+""2y^2=""5 and a parabola, y^2=""4sqrt(5)""x . Statement - I : An equation of a common tangent to these curves is y="x+"sqrt(5) Statement - II : If the line, y=m x+(sqrt(5))/m(m!=0) is their common tangent, then m satisfies m^4-3m^2+""2""=0. (1) Statement - I is True; Statement -II is true; Statement-II is not a correct explanation for Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement -I is False; Statement -II is True (4) Statement -I is True; Statement -II is True; Statement-II is a correct explanation for Statement-I

Let f: R R be a continuous function defined by f(x)""=1/(e^x+2e^(-x)) . Statement-1: f(c)""=1/3, for some c in R . Statement-2: 0""<""f(x)lt=1/(2sqrt(2)), for all x in R . (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Statement-1: The point A(3, 1, 6) is the mirror image of the point B(1, 3, 4) in the plane x""""y""+""z""=""5 . Statement-2: The plane x x""""y""+""z""=""5 bisects the line segment joining A(3, 1, 6) and B(1, 3, 4). (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Let A be a 2xx2 matrix with non-zero entries and let A^2=""I , where I is 2xx2 identity matrix. Define Tr(A) = sum of diagonal elements of A and |A| = determinant of matrix A. Statement-1: T r(A)""=""0 Statement-2: |A|""=""1 (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1

Statement-1: intsin^-1xdx+intsin^-1sqrt(1-x^2)dx=pi/2x+c Statement-2: sin^-1x+cos^-1x=pi/2 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

If A is 2 x 2 invertible matrix such that A=adjA-A^-1 Statement-I 2A^2+I=O(null matrix) Statement-II: 2|A|=1 (i) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I. 3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.