Home
Class 11
MATHS
If the equation of the locus of a point ...

If the equation of the locus of a point equidistant from the points `(a_1, b_1)` and `(a_2, b_2)` is `(a_1-a_2)x+(b_1-b_2)y+c=0` , then the value of `c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then find the value of c .

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_2+b_2)y+c=0 , then the value of C is

If the equation of the locus of a point equidistant from the points (a_1,b_1) and (a_2,b_2) is (a_1-a_2)x+(b_2+b_2)y+c=0 , then the value of C is

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

y^2=21-x x=5 The solutions to the system of equation above are (a_1,b_1) and (a_2,b_2) . What are the values of b_1 and b_2 ?

The condition for the lines with direction ratio a_1,b_1,c_1 and a_2,b_2,c_2 are perpendicular is -

In the pair of linear equations a_1x+b_1y+c_1=0 and a_2x+ b_2y + C_2 = 0. If a_1/a_2 ne b_1/b_2 then the