Home
Class 11
MATHS
Given y=1/(10^(1-log10 x)),z=1/(10^(1-l...

Given `y=1/(10^(1-log_10 x)),z=1/(10^(1-log_10 y))`, if `x=1/(10^(a+blog_10 z))` then `(b-a)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^((1)/(log_(10)x))

If y=10^((1)/(1-log_(10)x)) and z=10^((1)/(1-log_(10)y)) show that x=10^((1)/(1-log_(10)z))

Determine x if log_10 (log_10 x)=1

log_(10){log10x}=1 then x

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x