Home
Class 12
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `px^2 - qx + r = 0,` then the equation whose roots are `alpha^2+r/p and beta^2+r/p` is (i) `p^3x^2+pq^2x+r=0` (ii) `px^2-qx+r=0` (iii) `p^3x^2-pq^2x+q^2r=0` (iv) `px^2+qx-r=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the cquation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is

If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 then the value of sum alpha^(2)beta=

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0 such that alpha+beta=0 then

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum (1)/(alpha beta ) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =