Home
Class 12
MATHS
If the domain of y=f(x)i s[-3,2], then f...

If the domain of `y=f(x)i s[-3,2],` then find the domain of `g(x)=f(|[x]|),w h e r[]` denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x) is [-3,2] ,then find the domain of g(x)=f(||x]|), wher [] denotes the greatest integer function.

If the domain of y=f(x) is [-3,2] , then find the domain of g(x)=f([x]), where [] denotes the greatest integer function.

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

Domain of f(x)=sin^-1[2-4x^2] is ([.] denotes the greatest integer function)

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is