Home
Class 12
MATHS
If a,b,c are linearly independent, then ...

If `a,b,c` are linearly independent, then `([[veca+2vecb,2vecb+vecc,5vecc+veca] ])/([vecavecbvecc])`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

Prove that [veca+vecb vecb+vecc vecc+veca]=2[vecavecbvecc]

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)