Home
Class 11
MATHS
int(0)^(12)(2x)dx-1=...

`int_(0)^(12)(2x)dx-1=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1+2x)dx

int_(0)^(1)xe^(2x)dx

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

Show that int_(0)^(2)(2x+1)dx = int_(0)^(5)(2x+1)+int_(5)^(2)(2x+1)

Show that int_(0)^(2)(2x+1)dx = int_(0)^(5)(2x+1)+int_(5)^(2)(2x+1)

int_(0)^(2)(x^(2)-1)dx=

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are

int_(0)^(2)(3x^(2)+2x-1)dx=

int_(0)^(2)|1-x^(2)|dx

int_(0)^(2)(x^(2)+1)dx