Home
Class 11
MATHS
|[1/a, a^2,b c],[1/b,b^2,c a],[1/c,c^2,a...

`|[1/a, a^2,b c],[1/b,b^2,c a],[1/c,c^2,a b]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following has/have value equal to zero? |[8, 2, 7],[ 12, 3, 5],[ 16, 4, 3]| b. |[1//a, a^2,b c],[1//b,b^2,a c],[1//c,c^2,a b]| c. |[a+b,2a+b,3a+b],[2a+b,3a+b,4a+b],[4a+b,5a+b,6a+b]| d. |[2, 43, 3],[ 7, 35, 4],[ 3, 17, 2]|

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Show without expanding that |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=|[1,b c, b+c],[1,c a, c+a],[1,a b, a+b]|

Using the properties of determinant, show that : |[1,a+b,a^2+b^2],[1,b+c,b^2+c^2],[1,c+a,c^2+a^2]| = (a-b)(b-c)(c-a)

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)