Home
Class 12
MATHS
If O is the circumcentre and P the ortho...

If O is the circumcentre and P the orthocentre of `Delta ABC`, prove that `vec(OA)+ vec(OB) + vec(OC) =vec(OP)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If O( vec0 ) is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. vec(OA)+vec(OB)+vec(OC)=vec(OO') ii. vec(O'A)+vec(O'B)+vec(O'C)=2vec(O'O) iii. vec(AO')+vec(O'B)+vec(O'C)=2 vec(AO)=vec(AP) where AP is the diameter through A of the circumcircle.

If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O)A + vec(O)B + vec(O)C =

If S is the circumcentre, G the centroid, O the orthocentre of Delta ABC, then vec(S)A + vec(S)B + vec(S)C =

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')

If O and H be the circumcentre and orthocentre respectively of triangle ABC, prove that vec OA+ vec OB+ vec OC= vec OH .

If S and O be the circumcentre and orthocentre respectively of triangle ABC, prove that vec SA + vec SB + vec SC= vec SO .

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If O is the circumcentre, 'H' is the orthocentre of triangle ABC, then show that bar(OA)+bar(OB)+bar(OC)=bar(OH)