Home
Class 12
MATHS
If x^(y)=e^(x-y) then (a) (dy)/(dx) doe...

If `x^(y)=e^(x-y)` then (a) (dy)/(dx) doesn't exist at x=1 (b) (dy)/(dx)=0 when x=1 (c) (dy)/(dx)=(1)/(2) when x=e (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) = e^(x-y) , then (dy)/(dx) at x = 1 is ……..

Find (dy)/(dx) when x^(y)=e^(x+y)

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

If e^(y)(x+1)=1 ,then (dy)/(dx) is

Find (dy)/(dx) when y^x = e^(x-y) .

(dy)/(dx)=y tan x , y=1 when x=0

(x-y)(1-(dy)/(dx))=e^(x)

If y=(e^x-1)/(e^x+1) then find dy/dx

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0