Home
Class 12
MATHS
If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2)...

If `(a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2)` and `ab ne 0` then the numerical value of `(a)/(b)+ (b)/(a)` is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a^(2)+b^(2))^(3)=(a^(3)+b^(3))^(2) and ab!=0 the numerical value of (a)/(b)+(b)/(a) is:

If (a ^(2) + b ^(2)) ^(3) = (a ^(3) + b ^(3)) ^(2) and ab ne 0, then ((a)/(b) + (b)/(a)) ^(6) is equal to

If (a^2+b^2)^3=(a^3+b^3)^2 and ab ne 0 then (a/b+b/a)^6 is equal to :

If (a^2 + b^2)^3 = (a^3 + b^3)^2 and ab != 0 then (a/b + b/a)^6 is equal to :

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :