Home
Class 12
MATHS
Lim(x rarr cot^(-1)(-1))((tan^(3)x-2tan ...

` Lim_(x rarr cot^(-1)(-1))((tan^(3)x-2tan x-1)/(tan^(5)x-2tan x-1)) ` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr tan^(-1)) (tan^(2)x - 2tanx -3)/(tan^(2)x - 4tan x +3 ) =

lim_(x-1)(tan(x^(2)-1))/(x-1) is equal to

lim_(x rarr 1) (x-1) tan((pi x)/2)

the value of lim_(x rarr0)(tan(a+x)-tan(a-x))/(tan^(-1)(a+x)-tan^(-1)(a-x)) is equal to

lim_(x rarr 1) (1-x) tan((pi x)/2)

Lim_(x rarr 0)(tan(x)/(2)-tan(x)/(3)-tan(x)/(6))/(sin^2(x)(e^x-1))

lim_(x rarr 0) ((sin^(-1)3x)^(3) . tan x)/((tan^(-1)x)^(2).x^(2)) =

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to