Home
Class 12
MATHS
Let n be the smallest natural number for...

Let `n` be the smallest natural number for which the limit `lim_(x rarr0)(sin^(n)x)/(cos^(2)x(1-cos x)^(3))` exists,then `tan ^(-1)(tan n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(-1)a)/(x^(2))

lim_(x rarr0)(tan x)/(sin^(2)x)

lim_(x rarr0)((tan x)/(x))^(1/x)

lim_(x rarr0)(1-cos2mx)/(sin^(2)n)x

lim_(x rarr0)(1-cos2x)/(3tan^(2)x)

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((1-x)^(n)-1)/(x)

lim_(n rarr0)((1+cos n)/(n^(2)))

Find the limits: lim_(x rarr 0) (sin x +cos x)^(1/x)