Home
Class 12
MATHS
Let A and B be two invertible matrices o...

Let A and B be two invertible matrices of order `3xx3`. If det. `(ABA^(T))` = 8 and det. `(AB^(-1))` = 8, then det. `(BA^(-1)B^(T))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A and B be two invertible matrices of order 3 xx 3 . If "det"(ABA^(T)) =8 " and det"(AB^(-1)) =8, " then det"(BA^(-1)B^(T)) is equal to

Let A and B be two invertible matrices of order 3×3. If det (ABA^T)=8 det (AB^(−1))=8 , then det (BA^(−1)B ^T) is equal to

If A and B are square matrices of order 3 such that det. (A) = -2 and det.(B)= 1 , then det.(A^(-1)adjB^(-1).adj(2A^(-1)) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are square matrices of order 3 such that det.(A)=-2 and det.(B)=1, then det.(A^(-1)adjB^(-1). adj (2A^(-1)) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to