Home
Class 11
MATHS
If f(x)=cos('log"x), then evaluate: f(...

If `f(x)=cos('log"x),` then evaluate:
`f(x)*f(y)-(1)/(2)[f{(x)/(y)}+f(xy)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=cos (logx), find the value of f(x).f(y)-(1)/(2)[f(x/y)+f(xy)]

if f(x) = cos (log x) then the value of f(x) f(y)-(1//2) [f(x//y) + f(xy) ] is

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f (x) = cos (log_e x) , find the value of : f(x) f(y)-1/2[f(x/y)+f(xy)] .

If f(x)=cos(logx) , then : f(x).f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value :

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=