Home
Class 11
MATHS
The inverse of f(x)=(10^x-10^(-x))/(10^x...

The inverse of `f(x)=(10^x-10^(-x))/(10^x+10^(-x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of (10^(x)-10^(-x))/(10^(x)+10^(-x)) is :

The inverse of the function f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is -

If f:R rarr(-1,1) defined by f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible,find f^(-1)

If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)

If f: Rvec(-1,1) defined by f(x)=(10^x-10^(-x))/(10^x+10^(-x)) is invertible, find f^(-1)

Show that f: R rarr (-1,1) is defined by f(x) = (10^(x)-10^(-x))/(10^(x)+10^(-x)) is invertible also find f^(-1) .

The inverse of the function (10^(x)-10^(-x))/(10^(x)+10^(-x)) is

The range of f(x)=sqrt((10^(x)-10^(4))/(10^(x)+10^(2))) is

The domain of (10^(x) +10^(-x))/(10^(x)-10^(-x)) is: