Home
Class 12
MATHS
Let N=(2+1)(2^2+1)(2^4+1)............(2^...

Let `N=(2+1)(2^2+1)(2^4+1)............(2^(32)+1)+1 and N=2^lambda` then the value of `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let N=(2+1)(2^(2)+1)(2^(4)+1)......(2^(32)+1)+1and n2^(lamda)"then the value of" lamdais

Let N=(2+1)(2^(2)+1)(2^(4)+1)......(2^(32)+1)+1and n2^(lamda)"then the value of" lamdais

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

If y=ax^(n+1)+bx^(-n) and x^(2)(d^(2)y)/(dx^(2))=lambda y then write the value of lambda.

If A=[(1,1), (1,1)] and det (A^n-1)=1-lambda^n, n in NN, then the value of lambda_n is

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is