Home
Class 12
MATHS
Let Z0 is the root of equation x^2+x+1=0...

Let `Z_0` is the root of equation `x^2+x+1=0` and `Z=3+6i(Z_0)^(81)-3i(Z_0)^(93)` Then arg `(Z)` is equal to (a) `(pi)/(4)` (b) `(pi)/(3)` (c) `pi` (d) `(pi)/(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 and z_2 be complex numbers such that z_1 + i(bar(z_2) ) =0 and "arg" (bar(z_1) z_2 ) = (pi)/(3) . Then "arg"(bar(z_1)) is equal to a) (pi)/(3) b) pi c) (pi)/(2) d) (5pi)/(12)

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If Z=-1+ i be a complex number. Then arg(Z) is equal to O pi O (3pi)/4 O pi/4 O 0

If z=(1+2i)/(1-(1-i)^(2)), then arg (z) equals a.0 b.(pi)/(2) c.pi d .non of these

Let (z, w) be two non-zero complex numbers. If z +i w = 0 and arg (z w) = pi , then arg z is equal to a) pi b) (pi)/(2) c) (pi)/(4) d) (pi)/(6)

if arg(z+a)=(pi)/(6) and arg(z-a)=(2 pi)/(3) then

If z ne 0 and arg z=(pi)/(4) , then

If |z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3))) then arg ((z_(1))/(z_(2))) (not neccessarily principal) is (a) (3pi)/(4) (b) (2pi)/(3) (c) (5pi)/(4) (d) (5pi)/(2)

If z=(1+2i)/(1-(1-i)^2), then arg(z) equals a. 0 b. pi/2 c. pi d. non of these