Home
Class 12
MATHS
x^3/((x-a)(x-b)(x-c))=1+A/(x-a)+B/(x-b)+...

`x^3/((x-a)(x-b)(x-c))=1+A/(x-a)+B/(x-b)+C/(x-c)` then A=

Text Solution

Verified by Experts

`(ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x -b)(x-c))+((c +x-c)/(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(x)/(x-c)`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx +x(x-b))/((x-b)(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(x^(2))/((x-b)(x-c))`
`=(ax^(2)+x^(2)(x-a))/((x-a)(x-b)(x-c))`
`=(x^(3))/((x-a)(x-b)(x-c))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-a)^(3)+(x-b)^(3)+(x-c)^(3)-3(x-a)(x-b)(x-c)=0 , then x =

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

If |[1 1 1];[a b c];[ a^3b^3c^3]|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |[1 1 1];[(x-a)^2(x-b)^2(x-c)^2];[(x-b)(x-c) (x-c)(x-a) (x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a.a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c