Home
Class 12
MATHS
Statement 1: f(x)=((x-1)(x-2))/((x-3)(x...

Statement 1: `f(x)=((x-1)(x-2))/((x-3)(x-4))`, then `lim_(x->oo) sin^-1 f(x)` exists, but `lim_(x->oo) cos^-1 f(x)` does not exist. Statement 2: `sin^-1 x and cos^-1 x` are defined for `x in [-1,1]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

To show that lim_( x to 1)"sin"1/(x-1) does not exist.

If f(x)=(|x-1|)/(x-1) prove that lim_(x rarr1)f(x) does not exist.

Statement 1: If lim_(x rarr00)(f(x)+(sin x)/(x)) does not exist then lim_(x rarr00)f(x) does not exists. Statement 2:lim_(x rarr o)(sin x)/(x) exists and has value 1.

(lim)_(x->oo)(sin(1/x)+cos(1/x))^x

Statement - I: if lim_(x to 0)((sinx)/(x)+f(x)) does not exist, then lim_(x to 0)f(x) does not exist. Statement - II: lim_( x to 0)(sinx)/(x)=1

If f(x)=(x^(2))/(1+x^(2)), prove that lim_(x rarr oo)f(x)=1

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

If f(x)= sqrt((x-sin x)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) is equal to a)1 b)2 c) (1)/(2) d)0