Home
Class 12
MATHS
If A is a non singular square matrix; th...

If A is a non singular square matrix; then `adj(adjA) = |A|^(n-2) A`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is non - singular square matrix , then |adj A| is :

If A is a non-singular matrix, then A (adj.A)=

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is an invertible square matrix; then adj A^T = (adjA)^T

If A is a non-singular matrix of order n, then A(adj A)=

If is a nonsingular matrix of type n then Adj(AdjA)=

Let A be a non-singular square matrix of order n.Then; |adjA|=|A|^(n-1)

If A is a square matrix, then adj(A')-(adjA)'=